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Neutron time-of-flight data of polybutadiene and polyisoprene in a wide temperature range around the
glass transition are reported. The anharmonic part of the spectra is evaluated using a recently developed
time domain Fourier transform technique. The results corroborate the recent finding of two different
time domains in the dynamics, one above a crossover time of about 2 ps and the other below it. Two
different interpretations of the short time behavior are considered, namely a fast Debye regime of the a
relaxation and a vibrational softening of the boson peak.

PACS number(s): 64.70.Pf, 61.12.—q, 61.41.+¢

I. INTRODUCTION

The dynamics of polymers and other glass formers at
the glass transition is still a puzzle. One of the open
questions is the nature of the so-called ‘““fast process” ob-
served in the picosecond range by neutron and light
scattering [1-3]. These experiments reveal strong seem-
ingly quasielastic intensities appearing in the spectra first
somewhat below T,. With increasing temperature this
extra scattering increases strongly, thereby keeping con-
stant the “quasielastic linewidth” which corresponds to
processes in the picosecond regime. Compared to the bo-
son peak [4] which is in general observed at low tempera-
tures the characteristic width of the higher temperature
quasielastic lines is of similar magnitude. Because of its
apparently quasielastic nature, this extra scattering has
been interpreted in terms of a fast relaxation process,
which was also associated with the B relaxation of the
mode coupling theory [5-8]. However, because of its
unusual temperature dependence there have always also
been suspicions that this fast process is of vibrational ori-
gin [9]. These observations which relate to the @ regime
find their counterpart in Fourier transformed spectra ex-
hibiting a fast initial decay, which is then followed by a
relaxation process of clearly different qualitative features.

Recently, these two aspects, namely, the interpretation
of the fast process as an elementary relaxational step [10]
in the spirit of Ngai’s coupling scheme [11] or its descrip-
tion by vibrational softening and associated relaxation
processes in an anharmonic potential in terms of the vi-
bration relaxation model [12], have each been considered
by some of us. In the following we describe both ap-
proaches briefly.

The first point of view was taken in a recent analysis
[10] of time-of-flight (TOF) neutron scattering data
studying the picosecond dynamics of polyvinylchloride
(PVC). The incoherent intermediate scattering function
S(Q,t) corresponding to the nonharmonic additional
scattering appearing around 7, was obtained by a pro-
cedure which involves deconvolution by harmonic spec-
tra and Fourier transform to the time domain. The time

1063-651X/95/52(1)/781(15)/$06.00 52

dependence of the thus obtained S(Q,#) shows two
different dynamical regimes separated by a crossover time
t,~2 ps, which hardly depends on T and Q, at least
within the experimental uncertainties. At ¢ <¢?, the nor-
malized S (Q,t) could be well described by a simple ex-
ponential decay with a relaxation time which depends on
Q and T as 75,(Q,T) =< Q ~2exp[E/RT]. The activation
energy found, E =~5 kcal/mol, is in the range one can ex-
pect for the rotational isomerism barrier in PVC [13,14].
At t>t. and high temperature (T~T7,+100 K) the
S(Q,t) behavior is consistent with the Kohlrausch-
Williams-Watts (KWW) S(Q,7)=exp[ — (¢ /7gww)?] de-
duced from backscattering neutron data in the time range
107%<¢ <1078 5. The B value (8~0.23) is similar and
also the Q and T dependence of Txww- It is interesting to
point out that these results are in principle in good agree-
ment [15] with the assumptions of the coupling scheme
which was proposed a long time ago by Ngai [11]. This
approach assumes that below a characteristic time £, a
given relaxing unit behaves as if uncoupled from the sys-
tem (Debye-like “primitive motion”). At higher times,
the effects of correlations set in and the dynamics is
modified towards a KWW behavior. The order of magni-
tude of ¢, is not given in the model but it is supposed to
be shorter than 107 !°s. From the behavior of S(Q,¢) in
PVC described above, it is also possible to deduce [15] an
empirical relationship between 7,(Q,T) and Tgww(Q, T),
which turns out to be similar to the so-called ‘“second
universality”’ of the coupling scheme.

However, PVC is an unusual polymer due to both the
very low value of the KWW shape parameter (8~0.2)
and the extremely fragile [16] character (D =3). Accord-
ing to the recently proposed [17] empirical relationship
between fragility and the intensity of the low frequency
excitations (boson peak) the incoherent TOF spectra of
PVC do not show any clear evidence of a boson peak
even at temperatures below Tg. Moreover, the boson
peak has not been observed up to date in the low frequen-
cy Raman spectra of PVC [18]. Therefore, one important
question now is to know if the results obtained in PVC
are a general feature of glass-forming polymers or in con-
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trast are consequences of the particular character of
PVC.

The other approach was recently taken in order to in-
terpret neutron data on the fast process in polycarbonates
[12]. There, the softening of the boson peak and onset of
relaxations below the glass transition were explained in
terms of the vibration relaxation model which postulates
a vibrational origin of the fast process. At the basis of
this assumption are three experimental observations. (i)
In many glass-forming systems at larger energy transfers
(#%iw = 2 meV) the scattering function in the region where
Bose scaling holds exhibits a 1/w tail indicating a density
of states g(w)~w [19]. (ii) At low frequencies from Bril-
louin light scattering strongly temperature dependent
sound velocities are found near the glass transition [20]
(variations are typically on the order of a factor of 2) im-
plying a strong increase of the sound wave density of
states (correspondingly by about a factor of 8) and conse-
quently of the low frequency vibrational scattering. (iii)
Furthermore, vibrational softening of the boson peak has
been found in several substances [3,12,19,21].

Dwelling on these observations, the vibration relaxa-
tion model starts by ascribing the proportionality of g (®)
to w to the spectrum of a random dynamical matrix [22],
which in addition has the feature of an equal density of
positive and negative eigenvalues around #iw =0. Anhar-
monic potentials due to negative eigenvalues have a dou-
ble minimum shape which naturally implies fast local
hopping processes over the potential barrier. In the Kra-
mers weak coupling approximation [23] these hopping
processes are associated with the phonon damping and
are considered to be the fastest relaxation processes in the
glass or undercooled liquid. The scattering function com-
bining the slow damped vibrations and the associated re-
laxations is calculated in Gaussian approximation using a
Langevin approach.

In this concept, which was very successful in the inter-
pretation of the polycarbonate spectra, the Q2 depen-
dence of the fast process is a natural consequence of pho-
non scattering and ¢, is the crossover time between vibra-
tions and relaxations.

In this paper, trying to address the question of the na-
ture of the fast process, we have analyzed TOF data cor-
responding to other polymers, polybutadiene (PB) and
polyisoprene (PI-d3), by following the same procedure as
in the case of PVC [10]. Moreover, we have also evalu-
ated TOF data corresponding to a fully deuterated PB,
i.e., coherent scattering. The results obtained are dis-
cussed in the framework of the above-mentioned ap-
proaches. A critical revision of the deconvolution pro-
cedure used for analyzing the data as well as the approxi-
mations involved is also included in Sec. III.

II. EXPERIMENT
A. Sample preparation

All samples used in this investigation were linear po-
lydienes synthesized by anionic polymerization [24]. This
technique yields small polydispersities M,, /M, <1.1. By
choosing the conditions of the synthesis the microstruc-

ture of the product can be controlled. For all samples
this has been done in a way to minimize the number of
unwanted side groups (vinyl in the case of PB, 3,4 in the
case of PI) so that for the PB’s essentially backbone poly-
mers were obtained and the side groups of PI were main-
ly methyl groups. Due to the irregular sequence of bond
orientation (trans, gauche) crystallization is inhibited and
a glassy state is obtained even at the smallest cooling
rates.

Protonated polybutadiene (PB) was synthesized with a
molecular weight M, =8X 10* and a microstructure of
47% cis, 46% trans, and 7% vinyl monomeric units. The
glass transition temperature was T, =186 K determined
by differential scanning calorimetry (DSC). The fully
deuterated polybutadiene (PB-d6) had the same micros-
tructure and the molecular weight M, =9.5X10*. The
polydispersity was determined to be M, /M,=1.03 in
this case and the glass transition temperature 7, =181 K
from a DSC measurement. In polyisoprene (PB-d3) the
methyl group was selectively deuterated in order to
suppress incoherent scattering from its rapid motion.
Here, the molecular weight was Mw=7><104 and the
content of 3,4 monomeric units was 7% (the cis:trans ra-
tio was not determined but can be expected from the con-
ditions of synthesis to be 4:1). Literature values for T, of
similar polyisoprene samples range from 205 [25] to 213
K [26].

B. Neutron scattering experiments

The aim of the inelastic neutron scattering experiment
is the determination of the dynamic structure factor (or
scattering function) S (Q,w) which represents the materi-
al specific part of the cross section of scattering a neutron
with a certain momentum transfer #Q and energy
transfer #iw. It can be decomposed into an incoherent
and a coherent contribution, S;,.(Q,w) and S_,;(Q,w),
respectively. The former is determined by the self-
correlation function of the nuclei, the latter by the two-
particle correlation function—both Fourier transformed
in space and time. Because the self-correlation function
does not contain information about the arrangement of
nuclei in space, S;,.(Q,®) does not include any structural
information in its Q dependence; its Q dependence is only
determined by the spatial extent of the single-particle
motion. In contrast, S.,;,(Q,w) usually reflects the spa-
tial order as the static structure factor S(Q) from a
diffraction experiment does.

The intensities of both kinds of scattering depend
strongly on the nuclei observed. Especially, protons
cause an exceptionally strong incoherent scattering
(0ine=79.7 b/nucleus, o, = 1.8 b/nucleus) while deute-
rons give rise to more coherent scattering (o;,.=2.0
b/nucleus, o ., =5.6 b/nucleus). This fact can be used to
selectively emphasize one or the other by isotopic substi-
tution. In our case (Table I) PB is a nearly completely in-
coherent scatterer (94% of the total scattering) while
PB-d6 is a predominantly coherent scatterer (82% of the
total). It has to be noted that the incoherent scattering in
the case of PB is to more than 99.98% due to the pro-
tons, so that only their dynamic properties determine
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TABLE 1. Scattering cross-sections (in b per monomeric
unit) for the different samples investigated. The value in
parentheses for PI-d3 is the contribution of backbone-bound hy-
drogen nuclei to the incoherent scattering.

Sample Monomeric unit Ocon Tine T ot
PB CH,CH=—CHCH, 32.8 4782 511.0
PB-d6 CH,CD =CDCD, 55.8 12.0 67.8
PI-d3 CH,CH=C(CD,)CH, 53.4 404.5(398.5) 457.9
S(Q,w). For PB-d6 the coherent scattering is a mixture

of C-C, C-D, and D-D correlation contributions. The
scattering of PI-d3 is mainly incoherent (88% of the to-
tal) and the selective deuteration of the methyl group has
the additional effect that it essentially originates from the
backbone-bound hydrogen nuclei (98.5% of the in-
coherent scattering).

The experiments have been performed on the instru-
ment IN6 at the Institut Laue Langevin (ILL). This in-
strument determines the energy transfer by means of a
time-of-flight measurement. Because of its time-focusing
technique it provides good scattering intensities. In gen-
eral about two hours registration time at one temperature
were sufficient to obtain reasonable statistics.

The instrument was used with an incident neutron
wavelength A, =5.1 A yielding an energy resolution of
=90 peV [full width at half maximum (FWHM)]. The
angular range of the detectors of IN6 is 10°<26<115°
which corresponds to a Q range of 0.2-2.1 A 7! for elas-
tic scattering. It has to be noted that the actual Q value
for one detector deviates strongly from its “elastic” value
for the energy transfers which are of interest here (from
—2 to +10 meV energy gain of the neutron). Thus, a
constant-Q interpolation was indispensable and for small
Q values the range of energy transfers obtained was
strongly restricted.

PB-d6 and PI-d3 were measured in flat sample con-
tainers put at an angle of 135° with respect to the incident
beam in order to avoid self-shielding and self-absorption
effects. The same was done for PB by using a hollow
cylinder. Residual self-shielding and self-absorption
effects were corrected by the CROSSX computer routine
developed at the ILL. Multiple scattering was reduced
by preparing thin samples with low scattering probabili-
ties (measured transmissions: PB 93%, PB-d6 89%, PI-
d3 87%).

For the PB and PB-d6 samples an “orange” cryostat
was used for temperature control which allows a range of
1.5-310 K. In this case the measurement at the lowest
achievable temperature was used as the resolution func-
tion of the instrument. For PI-d3 the ILL “loop” device
was applied, which uses liquid nitrogen and cannot
achieve temperatures <80 K. Here, the resolution func-
tion was determined by a measurement of an equally
shaped vanadium sample.

Figure 1 shows representative TOF spectra from PI-d3
(analogous figures for PB and PB-d6 can be found in ear-
lier publications [27,28]). The actual data have been in-
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FIG. 1. S(Q,w) for PI-d3 at different temperatures and

scaled with Bose and Debye-Waller factors. The height of the
vertical axis (0.085 a.u.) corresponds to 1% of the elastic line
maximum. Reference temperature 7 =200 K. Inset:
Magnification showing the additional nonharmonic contribu-
tion to the scattering at 7> 180 K.

terpolated to constant Q =1.4 A" and scaled by Bose

and Debye-Waller factors. For the temperatures and the
energy range shown here this scaling is essentially only a
multiplication by a constant factor so that the shape of
S (Q,w) remains unaffected. For the lowest temperatures
at about 1.2 meV the boson peak is faintly visible (see
inset)—a feature which is a well known characteristic of
spectra from glass-forming materials in neutron and Ra-
man scattering. In this kind of scaling representation the
spectra essentially do not change any more below a cer-
tain temperature T'f; T,~180 K (PB, PB-dé6: szllo
K) [29]. For higher temperatures more and more quasi-
elastic scattering appears, finally covering up the boson
peak.
III. DATA ANALYSIS PROCEDURE

The procedure followed in Ref. [10] for analyzing PVC
TOF data was based on the following features. It is well
known that in the low temperature range below T, the
TOF spectra in the quasielastic range of fragile glass-
forming systems only show harmonic or quasiharmonic
contributions, i.e., the spectra fall on a master curve
when they are properly scaled by Bose and Debye-Waller
factors [28]. As the temperature increases towards T,
nonharmonic additional scattering starts to accumulate
mainly at the low energy range below =~3 meV. This
contribution, which grows in intensity as the temperature
is increased through T, arises from the so-called fast dy-
namics mentioned in the Introduction. The temperature
range at which this additional scattering emerges is usu-
ally located in the range T, -50 K, i.e., in the range of the
Vogel temperature T, where the Vogel-Fulcher expres-
sion for the temperature dependence of the viscosity
diverges. However, it has recently been reported [12]
that in the case of two different polycarbonates this T
range is located well below T,.

The nonharmonic contribution to the spectra can be
obtained by means of a deconvolution procedure in the
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framework of the following approximations. (i) The har-
monic behavior of vibrations observed at T < T, is extra-
polated to high temperature, i.e., a temperature indepen-
dent vibrational density of states is assumed. (ii) The har-
monic and the nonharmonic components of the spectra
are considered as statistically independent processes.
-Some questions-associated with these two approximations
will be discussed in Sec. V B.

In this framework, we can write a model scattering
function as a convolution product

S(Q,0)=S"2(0,0)8S"™(Q,0) , (1)

where we have adopted the term “rela” (relaxation) for
the nonharmonic scattering. To compare this model
function to the experimental curves we have to convolute
the expression in Eq. (1) with the measured instrumental
resolution function R (Q,w). Therefore the experimental
spectra should be given in this framework by

S*PHQ,0)=S"*Q,0)® S ™(Q,0)®R (Q,w) . (2)
We can rewrite Eq. (2) as

S(Q,0)=8"2(Q0,0)® R Q,0) , (3)

where R *®°(Q, w) plays the role of an effective resolution
for the so-called relaxation process given by

Reﬂ‘ect(Q,w)zsharm(Q,a))®R (Qw) .

Therefore R*™Y(Q,w) is the experimental scattering
curve corresponding to harmonic vibrations at the tem-
perature considered. It can be obtained from the har-
monic spectra at low temperature (T ST,) properly
scaled by the Bose and Debye-Waller factors. Fourier
transforming Eq. (3) into the time domain,

Sexpt( Q, t)=Srela( Q, t)Seﬂ'ect( Q, t) . 4)

In the following, in order to simplify our notation we will
call S™2(Q,¢) S(Q,1).

Then we calculate S(Q,t) by dividing the Fourier
transformation of the experimental spectra by the
Fourier transformation of the effective resolution spectra
obtained as described above. The limits of applicability
of this deconvolution procedure, as well as the uncertain-
ties of the results obtained, were studied by using several
theoretical model functions for S(Q,w), mainly Lorentzi-
an functions and Havriliak-Negami functions, which can
be considered as good analytical approximations to the
numerical Fourier transformation of the KWW inter-
mediate scattering functions [30].

Another interesting point is to compare the above-
described deconvolution procedure to another more con-
ventional one, i.e., deconvolution by only the instrumen-
tal resolution function. In the harmonic approximation,
the intermediate scattering function corresponding to
ST ») in Eq. (2) should decay in a relatively short
time (we will call it tpn) to a constant value, the Debye-
Waller factor. This can be seen in Fig. 2 where we have
represented the intermediate scattering function for the
harmonic part in the case of PB, calculated by deconvo-
lution of the effective resolution at 280 K with the instru-
mental resolution. In this case z,;, can be estimated to be
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FIG. 2. Comparison between S(Q,¢) for Q =1.4 A7 calcu-
lated from S (Q, ) of PB at 280 K by deconvolution of (curve a)
the instrumental resolution; (curve b) the effective resolution
(see text). S(Q,t) corresponding to the calculated harmonic
spectrum (see text) at 280 K is also shown (curve ¢). Curve d
shows the Fourier transformation of the instrumental resolution
function.

about 4X 10713 5. Therefore, in the framework of ap-
proximations (i) and (i), S(Q,#) and the intermediate
scattering function obtained by deconvolution with only
the instrumental function should be different only in a
constant factor in the time range ¢ >¢,;,. However, con-
cerning the short time regime where the scattering func-
tion is Debye-like, the phonon induced initial reduction is
important because ¢, is centered in the middle of the De-
bye regime. Thus deconvolution of the harmonic pho-
nons is important.

In order to avoid cutoff effects from the neutron energy
loss side of the spectra, the energy loss side of S(Q,w)
was calculated from the energy gain side using the de-
tailed balance condition.

IV. RESULTS

Following the general trends of glass-forming polymers
described in the preceding sections, the spectra of the
three polymers investigated show quasiharmonic
behavior until a temperature which depends on the poly-
mer (=120 K for PB and PB-d6 and ~ 180 K for PI-d3).
Until this temperature the spectra corresponding to each
polymer fall onto a master curve when they are properly
Bose and Debye Waller factor scaled (see Fig. 1 as an ex-
ample). At higher temperatures, a nonharmonic addi-
tional component arises in the scattering at low energies
(E <3 meV) and increases with temperature beyond the
harmonic expectation (see Fig. 1).

In order to obtain S(Q,?) we have applied to these re-
sults the analyzing procedure described in the preceding
section. In the cases of both PB and PB-d6 we have
chosen the quasiharmonic spectra at 100 K for construct-
ing the effective resolution. In the case of PI-d3 we have
used the spectra at 180 K.

Figure 3 shows the normalized intermediate scattering
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function S(Q,?) for the three polymers investigated and
for different temperatures and Q values. In the cases of
PB and PI-d3, as the scattering is dominated by the in-
coherent contribution, S(Q,?) corresponds to the self-
correlation function of protons. However, in the case of
PB-d6 the scattering is mainly coherent. Therefore
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FIG. 3. Normalized intermediate incoherent scattering f?‘l‘i'
tion S(Q,t). (a) PB: temperature dependence for Q =1.4 A ;
(b) PB: Q dependence at T =240 K; (c) PI-d3: temperature
dependence for Q =1.4 AT (,d)_ 1PB-dtS: temperature depen-
dence for the Q value (Q =1.4 A ') corresponding to the max-
imum of the static structure factor (coherent scattering func-
tion).

S(Q,t) is a two-particle correlation function. In Fig.
3(d), this function is represented for a value of Q =1.40
A~ which corresponds to the peak of the static structure
factor [31]. This implies that S(Q,¢) reflects in this case
mainly the interchain correlations. The time behavior of
S(Q,t) shown in Fig. 3 is the same as the reported one for
PVC [10], i.e., a two-step decay separated by a crossover
time t,~1-2 ps, which hardly depends on both Q and
temperature.

In the cases of PB and PI-d3 (incoherent scattering) we
can calculate a mean squared displacement of the scatter-
ing centers {r%(¢)) from the S(Q,?) obtained as

(r}(1))=(6/Q0%In[1/5(Q,1)] .

If the Gaussian approximation is verified the behavior
obtained for (r%(¢)) at a given temperature should be Q
independent. This was the behavior obtained for PVC
[10]. However, in the cases of PB and PI-d3, although
the calculated time dependence of (r%(z)) of each poly-
mer is similar for all the Q values investigated, the abso-
lute values are different, indicating deviations from the
Gaussian approximation. The behavior found indicates
that S (Q,t) can be written as

S(Q,n=exp[—Q"f(1)/6], (5)

where b <2. Here f(t), giving the time dependence of
the intermediate scattering function, is no longer an actu-
al mean squared displacement. However, f (¢) calculated
as f(t)=(6/Q%In[1/5(Q,t)] should not depend on Q.
Figure 4 shows that this is true, within the experimental
uncertainty, for b =1.4 in the case of PB and b =1.3.in
the case of PI-d3. f(t) shows two dynamical regimes
separated by the crossover time defined above. f(z) can
be expressed as
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FIG. 4. Time dependence of S(Q,t): (a) PB; (b) PI-d3.
Different lines at each temperature correspond to different Q
values.
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t, t<t,
f()x B i1, (6)
where the B value depends on the polymer and on the
temperature for each polymer. In the high temperature
range (T'= T, + 100 K), the value of § found is 8=0.3 for
PB and $=0.2 for PI-d3. As the temperature decreases
towards T, the value of 8 also decreases for both poly-
mers. Therefore, apart from the question of the Gaussi-
anity of S(Q,?), the results that were obtained for PVC
are now confirmed for other polymers, i.e., they are not
associated with the particular character of PVC.

It is interesting to point out that the expression ob-
tained for S'(Q,?) in the time range ¢ > ¢, corresponds to a
KWW function given by S(Q,t)=exp[—Q%/AC(T)tP]
where C(T) is a temperature coefficient. This expression
can be rewritten as S(Q,t)=exp{—[¢/7(Q,T)]?} where
the Q dependence of 7(Q,T) is given by 7(Q,T)xQ ™"
with n =b /B. In the high temperature range of PB, the
results obtained imply S=0.3 and n =4.7. A similar
functional form for S(Q,¢) with similar values of these
parameters (8=0.3 and {n ) =4.8) was obtained for the
a relaxation of PB from neutron backscattering (IN13,
ILL Grenoble) results (see [28]).

Concerning the question of the Gaussian behavior, it is
interesting to recall that it has been found that the Gauss-
ian approximation is approximately followed by the inter-
mediate scattering function of the a relaxation (at least in
the high temperature range) in several structurally
different polymers [32]. The deviations found for PB and
PI-d3 could be related to the anisotropy introduced in the
main chain by the presence of double bonds randomly
distributed.

More generally, one could assume that as a conse-
quence of the disorder present in a glass some atoms un-
dergo larger mean square displacements than others, giv-
ing rise to an anomalous Debye-Waller factor. Recent
multidimensional NMR results on slow relaxations in a
molecular glass point in this direction. However, this
question is beyond the objectives of this paper and will be
the subject of future work.

V. DISCUSSION

As outlined in the Introduction, we shall take two pos-
sible views in interpreting the neutron results. The first is
phenomenological and interprets both the short and
longer time processes in polybutadiene (once the harmon-
ic phonons are removed) as relaxational phenomena, thus
following the line of arguments recently taken for PVC.
In this concept the initial decay in S(Q,t) is due to a
short time Debye process while the long time tail
represents the initial part of the KWW function describ-
ing the a relaxation. In a second step we develop a model
which is based on the interpretation of the fast initial de-
cay of the intermediate scattering function as due to vi-
brations. On the basis of a simple soft potential model we
relate relaxations and vibrations. This vibration relaxa-
tion model is then compared with the intermediate
scattering functions for polybutadiene and polyisoprene.

A. Phenomenological interpretation

Taking into account the results obtained in the preced-
ing section [expressions (5) and (6)] we can write the nor-
malized intermediate scattering function S (Q,t) as

t
expl——— |, t<¢
P TD<Q,T>] ‘

S(Q,0)= ; B )
exp[—

S — , t>t,.,
Teww(Q, T) ¢

i.e., a Debye-like behavior in the fast regime (¢ <z, ) and a
KWW one in the slow regime (¢ >¢.). In these expres-
sions, the Q dependence of the characteristic times 7
and 7gww should be given by 7p,xQ7® and
Trww < Q ~°/P according to Eq. (5). Then we have fitted
S (Q,t) shown in Fig. 3 to Eq. (7). In the case of the slow
regime (f>¢,), we have restricted our analysis to the
high temperature range (7T =240, 260, and 280 K) of PB
where the 8 value found varies slightly from 0.25 at lower
T to 0.32 at the highest T and is similar to the value ob-
tained by neutron backscattering techniques [28]. This
means that in this temperature range we can assume that
we are observing a direct crossover from the fast dynami-
cal regime towards the a relaxation.

In the low temperature regime the lower B values
found suggest the possibility of an intermediate dynami-
cal regime just after the crossover time ¢, and before the
a relaxation regime. Our results suggest that in the case
of PI-d3 only this possible intermediate regime is accessi-
ble in the time window of the IN6 instrument at the mea-
sured temperature range. However, our actual experi-
mental accuracy does not allow us to obtain definite con-
clusions about this question. Concerning the fitting pro-
cedure, it is interesting to point out that we have con-
sidered 7 and Tgxww as free fitting parameters, i.e., we
have not forced the above-mentioned Q dependence of
these times. Moreover, in the case of the high tempera-
ture slow regime of PB we have used as the 3 parameter
the average value for the three temperatures deduced
from the f(¢) behavior, i.e., 8=0.30. Some representa-
tive fitting curves are shown in Fig. 5. These curves de-
scribe quite well the experimental S(Q,¢) behavior. By
this fitting procedure we obtain the Q and T dependence
of the characteristic times 7, and 7gww corresponding to
the fast and slow a relaxation regimes, respectively.

The behavior is shown in Fig. 6 for PB. Values of
Teww(Q) for the a relaxation of PB at 230 and 250 K,
obtained from neutron backscattering measurements and
taken from Ref. [28], have also been included for compar-
ison. However, the values of T¢xww(Q) from this refer-
ence and corresponding to 210 K were not considered be-
cause this temperature is lower than the temperature at
which the a and B (slow) dielectric relaxations merge.
Therefore it is not clear if the quasielastic behavior mea-
sured by IN13 only corresponds to the a process. At this
point it is interesting to remark that the range of Q
covered by the backscattering instrument used (IN13)
was wider than that of the TOF (IN6) measurements. It
turns out that the Q dependence found for 7, and Tgxww



52 NEUTRON SCATTERING STUDY OF THE PICOSECOND. .. 787

09
0.8
-
S o7 L 240 K
w
0.6 | 260 K
0.5 + 280K
\~
0.4 1 Lol L l‘\lLLlJII 1 LN
10" 107" 10! 10710

t(s)

FIG. 5. S(Q,t) for PBat Q=1.4 A~ ' and different tempera-
tures. Lines through the points are fitting curves according to
expression (7) (see text).

is temperature independent within the experimental un-
certainties. Moreover, the Q dependence of Txww is the
same for both the values of Txww corresponding to TOF
measurements and those from the backscattering mea-
surements (IN13). It is interesting to point out that the
latter were obtained not only from a different experimen-
tal technique but also by a more standard analysis pro-
cedure of the data directly performed in the frequency
domain. Therefore the good agreement found between
both sets of data gives additional support to the deconvo-
lution procedure used in this work.

The results described above show that the temperature
dependence and the Q dependence of both 7, and Txww
can be factorized: 7(Q,T)=a(T)r(Q). Then, in both
cases a master curve 7(Q), giving the Q dependence of
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FIG. 6. Q dependence of the relaxation times 7 and Tww for
PB at different temperatures. 75: (X)) 280; (®) 240; (+) 200 K.
eww: (Q) 280; (0) 280; (#) 250; (A) 240; (O) 230 K. The
values of Tgww at 230 and 250 K are taken from Ref. [28] and
correspond to backscattering measurements (see text). Lines
through the points correspond to the law Q ~'* for 7, and
Q %3 for Tgww-

7(Q,T), can be constructed by shifting the corresponding
7(Q, T) values in the logarithmic 7 scale towards a refer-
ence value 7(Q,T,). Here T, is an arbitrary temperature
of reference in the measured temperature range. More-
over, the shift factor values used for producing this mas-
ter curve allow us to obtain the a (T) behavior and there-
fore the temperature dependence of the 7(Q,T) con-
sidered. The master curves obtained for 7, and Ty ww in
PB are shown in Fig. 7. The Q dependence found for a
regression fit of these master curves is 7,(Q) < Q ~'* and
Teww < @ ~ 43 (reference temperature 260 K).

From these functional forms and the expressions (5)
and (7) we deduce a b value of b =1.4 in good agreement
with the b value found in the previous section (1.4) from
the f(¢) construction [see Fig. 4(a)]. Similar results are
obtained for 7, in the case of PI-d3 giving
7p(Q)x< Q" !3. Figure 8 shows the temperature depen-
dence of 7, and Ty obtained for PB at Q =1.4 A~}
yielding similar results to those from PVC reported in
Ref. [10]. The values of Txww Obtained at 240, 260, and
280 K follow the same temperature dependence as the
Tww Obtained by backscattering techniques (analyzed in
the frequency domain) at 250 and 230 K, as well as the
temperature dependence of the viscosity time scale [28].
Therefore, as in the case of PVC [10], the results obtained
by TOF confirm the results obtained for the a relaxation
in a different time scale by backscattering techniques.
Once again this gives additional support to our analysis
procedure. The temperature dependence of 7, follows an
Arrhenius-like behavior, 7, (T)=7¢exp[E /kg T], with an
activation energy E=1.9 kcal/mol and a value of the
preexponential factor of 1.1X107 B s for 0=1.4 A~
Similar Arrhenius laws for 7, are found for PB-d6 and
PI-d3. In the case of PB-d6 (coherent scattering) Fig. 8
shows the temperature dependence of 7, for two different
Q values, 0 =1.4 and 1.9 A corresponding to the first
maximum and the first minimum of the static structure
factor S (Q), respectively. In this case, the activation en-
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FIG. 7. 7(Q) master plots obtained from data shown in Fig. 6
(see text) and giving the Q dependence of 7, and Txww for PB.
Continuous lines through the points are linear regression fits
(reference temperature 260 K).
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FIG. 8. Temperature dependence of the relaxation tlmes T
and 7wy for PB. (0) 75 (Q=1.4A7")(Q) 15 (Q=1.4A7")
corresponding to PB-d6; (A) T (Q =1.9 A ') corresponding
to PB-d6; (.) Trww (@ =1.4 A ") from TOF data; (A) Txww
Q=14 A7) from backscattering data. The continuous line
through the 7xww data corresponds to the viscosity time scale.

ergy found, although about 2 kcal/mol too, is slightly
dependent on Q. This point will be discussed below. The
activation energy found for PI-d3 is around 2.7 kcal/mol.
On the other hand, we have also compared the Q depen-
dence of 7, corresponding to both coherent and in-
coherent scattering. Figure 9 shows that in the Q range
covered we can write 73"« 78S (Q), where the static
structure factor S (Q) has been calculated from the TOF
(IN6) data. This behavior displays the so-called de
Gennes narrowing [33], which can be established for qua-
sielastic diffusionlike behavior. Therefore this result ap-
pears to give support to the physical idea behind the phe-
nomenological analysis described above, i.e., the S(Q,t)
obtained through the deconvolution procedure used has a
relaxational origin even in the short time regime. More-
over, the de Gennes-like relationship also explains the
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FIG. 9. Comparison between the 7, values corresponding to
coherent scattering (full symbols) and the 7, values correspond-
ing to incoherent scattering multiplied by the static structure
factor S(Q,T). Lines through the points are drawn to guide the
eyes.

slight differences for the activation energy of 75" corre-
sponding to the Q values of the first maximum and first
minimum of S (Q) respectively. These differences can be
understood taking into account that S (Q) of PB changes
with temperature and that the change is stronger for the
first maximum [31].

In the framework of the phenomenological analysis de-
scribed above, the results can be interpreted as follows.
First of all, it is worthy of remark that the expression
used (7) for S (Q,?) in fact implies that the two-step decay
displayed by S(Q,t) should correspond to only one
dynamical process showing a complex relaxation func-
tion. The “shape” of this relaxation function S(Q,t) de-
pends on the time scale of observation and changes
around the crossover time. If the process is observed
through an instrument with a short time scale window
(t <t,), then the time dependence for S(Q,¢) can be ap-
proximately described by a single exponential decay. On
the other hand, if the time window of the instrument is
in the range t > ¢,, then the time dependence can be quite
well approximated by a KWW function, at least in the
high temperature range (in the lower temperature range
another functional form cannot be discarded as has been
mentioned above). However, in both cases the preex-
ponential factor of the exponential function or of the
KWW function describing the normalized S(Q,?) is close
to 1.

Another interesting point is that the extent to which
S(Q,t) relaxes following the exponential or the KWW
decay depends on both Q and temperature. At the high
temperature limit, the whole of the decay would take
place in the short time regime (¢ <t¢,), and S(Q,¢) would
approximately follow only an exponential decay. Howev-
er, extrapolating our results, the temperature range at
which this single exponentlal should be observed
(T=T,+300K fora Q=1 A™Yis beyond the tempera-
ture range where a polymer is chemically stable. At the
aﬂccessed Q and temperature range (T'<T, +100 K, 0 =~1
A1) only a small fraction of S(Q,?) decays following the
exponential law (see, for example, Fig. 6). This implies
that the deduced (by fitting) relaxation time 7, (~10"!!
s) is usually beyond the crossover time ¢,.

If we identify the KWW behavior observed at ¢ >z, (at
least at high temperatures) with the a relaxation, then we
have to associate the first exponential decay of S(Q,t)
with the short time regime of this a relaxation. Now we
ask, what is the molecular origin of this short time re-
gime, i.e., the molecular origin of the elementary motions
involved in the a relaxation? Nowadays it is believed
that in the case of glass-forming polymers the elementary
motions involved in the a relaxation should be related to
the conformational transitions which take place in the
isolated chain [34]. However, the connection between the
two dynamical processes is not clear up to now. The dy-
namics of conformational transitions in isolated chains is
usually investigated by both experiments in very dilute
solutions (NMR, etc.) and molecular dynamics (MD)
simulations.

The activation energies found for conformational tran-
sitions are in the range of 2—-5 kcal/mol [34], similar to
the activation energies for the Debye regime found by us
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from the temperature dependence of 7,. In PB and PI-
d3 (this work) we find E on the order of 2 kcal/mol. For
PVC it was previously reported [10] that E =6 kcal/mol,
although a new careful analysis of the data, taking into
account the improvements of the deconvolution pro-
cedure introduced here, gives a lower value E =~4.5
kcal/mol. It is interesting to point out that we obtain
similar values of E for PB and PI-d3, i.e., for two poly-
mers with similar chemical structure of the chain. This
seems to indicate that the origin of the activation energy
found is intramolecular, supporting the idea of identify-
ing the exponential regime of S (Q,¢) with the conforma-
tional dynamics of the isolated chain, i.e., free from
molecular interactions. One possible objection to this
identification is that the relaxation function of the
different theoretical models frequently used for describing
the conformational dynamics of the chain (see, for exam-
ple, the Hall-Helfand model [35]) is not a single exponen-
tial. However, it has been shown in a recent paper [36]
that in the short time limit a single exponential decay of
correlations is approached in all models. Moreover, a
single exponential decay has recently been observed in
the short time behavior of the first order torsion auto-
correlation junction in cis-PB by molecular dynamics
simulation when the contribution of the oscillatory
motions is removed [37]. Therefore the exponential de-
cay of S(Q,t) in the short time regime (¢ <t,) could be
considered as an adequate approximation.

Finally, in the framework of the interpretation above,
the meaning of the crossover time ¢, should be the time at
which the intermolecular correlations start to play a
significant role concerning the segmental dynamics.
Below ¢, the chain is not affected by its neighbors, and
the conformational dynamics follows an approximate ex-
ponential behavior. After ¢,, the short time behavior is
modified towards a KWW-like relaxation function, at
least in the high temperature range.

As was suggested by some of us in a previous paper
[10] and mentioned in the Introduction, this interpreta-
tion recalls the basic ideas of the so-called coupling mod-
el proposed a long time ago by Ngai [11] for describing
dynamical processes in complex correlated systems and
in particular the suggested application of such a model to
polymer dynamics [38].

B. The vibration relaxation model applied to PB and PI

A harmonic oscillator is characterized by a spring and
the oscillating mass. The eigenfrequency is then given by
the square root of the ratio of the two. If one goes to a
molecule consisting of N atoms having the masses M;
(i =1,...,N) the vibrational properties are described by
a dynamical matrix

1 vV

— . (8)
\/MiMj Ou;,0u g

Here V is the interatomic potential, u,, the displacement
of atom i in direction a, and DgB the dynamical matrix.
Such a matrix is symmetric and has n real eigenvalues A,
(k=1,...,3N) which are related to the eigenfrequencies

by @y = }\k .
The eigenvectors describe the displacement pattern of
the atoms
LI ©
u;= — 5
i ot M,- k

where e, are the eigenvectors and A4, the normal coordi-
nates. Finally, in terms of the normal coordinates the en-
ergy of the oscillating systems can be written as

3N .
E= 3 [1A}+ir 47+0(47)], (10)
k=1

where the first term in the square brackets describes the
kinetic and the second term the potential energy.

Compared to a molecule or a crystalline solid, the ener-
gy landscape in a glass is fundamentally different. As a
consequence of the nonequilibrium glassy state, the po-
tential surface can be understood as a multiminima struc-
ture. Therefore the local equilibrium positions of
different atoms are not necessarily situated in the local
energy minimum-—it is even conceivable that an atom
occupies a site at the top of an energy barrier—Ileading to
eigenmodes with negative eigenvalues.

In such a frustrated multiminima energy landscape at
least the part of the dynamic matrix dealing with low fre-
quency excitations may be considered as a random sym-
metric matrix, where the different matrix elements are
randomly distributed. Such random matrices were stud-
ied in the 1950s in connection with low lying excited
states of complex nuclei. According to Wigner [22], the
density distribution of eigenvalues of such a matrix forms
a semicircle around the eigenvalue A=0. Thus positive
and negative eigenvalues occur with the same probability.

This picture of a random matrix with a nearly constant
density of eigenvalues around the origin is the starting
point of our model, which tries to combine the low fre-
quency excitations in glasses with the picture of low bar-
rier relaxations [12]. This is performed in a single-mode
picture where we can write down the Hamiltonian for
each uncoupled normal coordinate separately:

. v

HA=%Ai+22“—A§+—f
Here the nonharmonic fourth order term v, is needed in
order to stabilize states with negative eigenvalues. Figure
10 displays typical potentials for a normal coordinate for
positive and negative A. For positive A we mainly have
harmonic vibrations, while for negative A the fourth or-
der term creates a double-well potential. In this potential
vibrations both around the minimum positions as well as
over the barrier relaxations are possible. From the poten-
tial energy part in Eq. (11) we can calculate the height of
the barrier E,,

A% . (11

E,=—, (12)

and the distance between the minimum positions 4,

1Al
vy

A% = (13)

min



790 R. ZORN et al. 52

PV

8|_..
° N

(b) (a)

Y
>

FIG. 10. Typical potentials for a normal coordinate (a) posi-
tive eigenvalue and (b) negative eigenvalue.

From the second derivative of the potential function in
the minima we get the vibrational frequencies w?=2|A|.
In order to describe the hopping rate I' in between the
two minima we use Kramers’ result for over the barrier
hopping in the weak coupling limit [23]:
E, —E /kyT
L=y T ¢ (14)
The weak coupling limit is a good approximation as long
as the vibrational damping y is small compared to the
eigenfrequency w,.
In order to come to a tractable model we now have to

make a number of simplifying assumptions which are,

summarized in the following.

(1) We assume a constant eigenvalue distribution P(A),
implying a density of states proportional to o,
g (w)=3w /w3, where wy is the first parameter of the mod-
el.

(2) The stabilizing fourth order term v, in Eq. (11) is
assumed to be the same for all eigenmodes.

(3) The double-well potentials do not exhibit an asym-
metry (v3=0).

(4) The vibrations are treated classically using the

Q%yT
S(Q,1)yp=exp l— "

Here, o, is the cutoff frequency which follows from the
normalization requirement. This is approximately
fulfilled for co§=2w02/3. The frequency of the damped

oscillator @=V w?—y2/4 may become
without invalidating the result.

The consideration of incoherent scattering from vibra-
tions in the time domain has the invaluable advantage

imaginary

[0}
f ¢ g(c;)) ‘l—e’“’/z” [—Lsin&it + cos@t
0 a) 2

Langevin equation for the damped oscillator (see the Ap-
pendix). Thereby, for all vibrations we assume the same
friction ¥ =const; ¥ is the second parameter of the mod-
el.

(5) For the density of states we use an empirical formu-
la which approaches the correct low and high frequency
limits

172
g ()= 30? | a +a?
03 | b+t (
15)
cogw‘; cof,co‘,‘,

0% —2wiw}’ % —20fw?

For small v g(w) approaches the sound wave limit
3w?/w}. For large o Eq. (15) yields the density of states
of the random matrix. In between, g (w)/w* exhibits a
maximum—the boson peak. The third parameter of the
model is the boson frequency w,. The Debye frequency
@p can be taken from high frequency sound wave experi-
ments like Brillouin scattering. In the actual fits it was
the fourth varied parameter.

(6) In order to relate the mean squared displacements,
which are the measured quantities, to the normal coordi-
nates an equipartition of amplitudes according to Eq. (16)
is assumed:

N 2\ N exgk 2y ( AI% )
igl(x,k i§1 M (A} = 7 (16)

Equation (16) describes the contribution of one normal
coordinate A, to the average atomic displacement. The
sum here is taken over all atoms of the glass.

(7) For the hopping motion across the well of the
double-minimum potential Kramers’ weak damping case
is assumed [see Eq. (14)].

(8) Finally, the relaxations will be treated in Gaussian
approximation.

On the basis of this greatly simplified model now the
dynamic structure factor S(Q,?) will be calculated.
Equation (A8) of the Appendix gives the incoherent inter-
mediate scattering function for a single damped oscillator
[39]. Inserting the density of states Eq. (15) the in-
coherent scattering function of the vibrating ensemble be-

comes
a'a)] ] . (17)

that there the scattering function can be calculated
analytically without resorting to any order of phonon ap-
proximation. In other words, S(Q,?) in Eq. (17) includes
all multiphonon contributions.

For the relaxational part we have to consider hopping
motion in a double-well potential. Assuming for simplici-
ty double wells of equal depth with a jump distance d
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and a jump rate I',, the orientationally averaged inter-
mediate incoherent scattering function has the form

S(Q, ) =7 {[1+7o(Qdr)]+[1—jo(Qd))]e

with j,(x) denoting the spherical Bessel function of zero
order. The first part of Eq. (18) is the elastic incoherent
structure factor (EISF); the second part contains the in-
formation on the time scale of motion. For small jump
distances we expand j,(x)=~1—x2/6 and obtain

~2t1‘,\} (18)

(Qd, )? -
S(Q,1),=1— 9, (1—e ™). (19)
12
J
_, 2k _AdA L
S(Q’t)rel_l 3 \/4kBTv4 A)21)4kBT(1

Substituting A2/(4v,kz T)=£ and inserting P(A)=3/w}
Eq. (20) transforms to

QBT

S(Q’t)rd:l Mo

f dE(1—e 27875 1)

Finally, exponentiating Eq. (21), the relaxational in-
coherent intermediate scattering function becomes

k -—
S(Q’t)relgexp{ Q — f d§(1 _2t7’§e g)] .

(22)

The total scattering function S(Q,¢) is then obtained as
the product of S(Q,t),;, and S(Q,t),;, which may also be
written as

QZ
S(Q,t)=expi— [uV,b(t)+urel(t)] (23)

Equation (23) constitutes the final result for the in-
coherent scattering function of the vibration relaxation
model.

The data evaluation presented in Sec. IIT was based on
the assumption that the scattering from the low frequen-
cy phonons properly Bose scaled to higher temperature
could be subtracted from the actual spectra in order to
obtain the relaxational contributions. In the framework
of the presented vibrational relaxation model this treat-
ment of the low temperature phonons is not adequate in
principle. However, in order to be able to compare with
the presented data we subtract the Bose-scaled contribu-
tion of the low temperature phonons also in our theoreti-
cal function, which then yields

2
S(Q,0=exp | =L {udy (O [ulg™ (O P +uy (1)

(24a)

In the next step we have to average over the distribution
P(A). For this we consider only those double wells where
the barrier is larger than kzT. With the barrier height
E,=M\?/4v, [Eq. (12)] and using the relation between
normal coordinates and mean square displacement [Eq.

(16)], Eq. (13) yields for the jump distance d3
=4|A|/(Mv,). With the jump rate
A? —A2/40,ky T
F = _— 4"B
MV ok, T €
[Eq. (14)] we have
—A% /80, kT
—2ty(A2/4v ky e 4B ¥ (20)
[
kzT oham Eharm (@)
h 2 _B harm & harm _
(wigmr=—r [ —(1—cosondo (24b)

The parameters for the harmonic density of states for PB
are obtained from a fit to the spectrum at 100 K. The ap-
plication of the phenomenological equation for the densi-
ty of states [Eq. (15)] needs as an input the Debye fre-
quency resulting from the sound waves,

Vo [1 | 2
=5+ 25)
0p 67 | vj v;

where v; and v, are the longitudinal and transverse sound
velocities, respectively, and ¥V, is the monomeric volume.
The Debye frequency wj, is taken as a fit parameter and
later compared to an ‘‘experimental value” estimated
from Brillouin sound velocities.

Including the harmonic mean square displacement
(uham)2 [Eq. (24b)] we fitted Eq. (24a) to the Fourier
transformed deconvoluted spectra (see Sec. IV), varying
the constant eigenvalue density 3 /w3, the boson peak fre-
quency o,, the phonon damping rate y, and the Debye
frequency wy. Figure 11 compares the deconvoluted PB
spectra taken at Q =1.4 A~! with the calculated curves
at seven different temperatures.

As can be seen from the comparison of the theoretical
and experimental scattering functions the agreement be-
tween model and experiment is excellent at times shorter
than about 10 ps. The most salient feature of the data,
namely, the two-step character of the decay process in
S(Q,t), is depicted very well by the model. This is also
true for the detailed shape of the scattering function.
The first decay at times shorter than about 2 ps mainly
results from the low frequency vibrations, which in this
model are shifted with increasing temperature towards
lower frequencies. The second part—the long time
tail—originates from the relaxational part of the scatter-
ing function and is due to the jump motion across the



792 R. ZORN et al. 52

1.2 T T

1.1} polybutadiene 1.4 A’ :

1.0

0.9
0.8

sy

0.7
0.6

A
*
<
[ ]
a
L ]
]

0.5}

10712 10"

time (s)

10-13

FIG. 11. Fits of the polybutadiene data of Fig. 3(a) with the
vibration relaxation model.

double-well potentials. In this relaxational regime for
long times the model at low temperatures overestimates
and at higher T underestimates the experimental decay of
the scattering function. The too strong decay of the
theoretical model at low T can be understood because all
assumptions concerning the hopping motion in the
double-well potential tend to overestimate the corre-
sponding rates. (i) Kramers’ weak coupling limit gives
the maximum possible relaxation rate. (ii) The neglect of
asymmetry in the potential gives rise to a too strong con-
tribution of fast hopping processes. At higher tempera-
tures additional relaxation processes occur which are not
depicted by the vibration relaxation model. It is straight-
forward to reason that those extra relaxations are most
likely due to the onset of the a relaxation. Its short time
part appears to move into the observation window. Nat-
urally, the vibration relaxation model cannot describe
these structural relaxations, which give rise to the flow
processes. ‘

In order to scrutinize the consistency of the Fourier
transformation and deconvolution procedures we also
fitted the dynamic structure factor S (Q, ) resulting from
our model directly to data in @ space. For this purpose
we used the one-phonon approximation and excluded the
elastic part. The theoretical scattering function, thereby,
was convoluted with the spectrometer resolution func-
tion. Figure 12 displays such a fit to time-of-flight data
taken on IN6 with neutrons of 4.1 A wavelength. For the
three temperatures shown again an excellent fit is ob-
tained.

Figures 13 and 14 present the resulting model parame-
ters as a function of temperature. There, the circles
represent the parameters from the fit in w space while the
squares denote the outcome of the fit in the time domain.
As can be seen, a consistent set of parameters evolves.

The most prominent outcome is the pronounced
softening of the boson peak frequency w, which sets in
already well below the glass transition temperature
(T,=186 K) and leads to its extinction around room
temperature. Such a strong downward shift of the Boson
peak cannot easily be explained via a Griineisen relation
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FIG. 12. Fits to polybutadiene data in w space with the vi-
bration relaxation model. The arrows indicate the contribution
of the sound waves to the density of states at the respective tem-
peratures. Thereby the level increases with temperature.

working on the basis of thermal expansion. Taking the
literature values [40] for the thermal (volume) expansion
a,=1.8X107* K™ in the glass phase and a;=6X107*
K ! in the liquid phase, the strong softening of the boson
peak requires a mode Griineisen y; =dlnw; /8In¥ of 15.5
in both phases. If one calculates a thermal Griineisen pa-
rameter ¥ r=aB /pC, at 100 K, taking measured specific
heat data [41], the bulk modulus B from the sound veloci-
ties [42], and the density p=890 kg/m? one obtains
v7=2.8. So the boson peak would have to be six times
more sensitive to volume changes than the average vibra-
tional mode. On the other hand, the longitudinal sound
waves have a mode Griineisen ¥ of 5.5, also considerably
more than the average. The clarification of this question
remains a challenging task for the future.

3 T T

polybutadiene

(meV)

frequency

on

0 n B = wm B
0 100 200 300
temperature (K)

FIG. 13. The model parameters w,(boson peak frequency)
and y (vibrational friction) resulting from the vibration relaxa-
tion model fits of polybutadiene as a function of temperature.
The solid line corresponds to the mode Griineisen parameter
discussed in the text. The dotted line displays {u2)?/T [see Eq.
27)].
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FIG. 14. The model parameters w, (normalization frequency)
and wp (Debye frequency) of the vibration relaxation model fits
of polybutadiene as a function of temperature.

According to Eq. (A2) the phonon damping y is pro-
portional to the average square of the stochastic force di-
vided by the temperature. Considering third order in-
teraction as a main cause for anharmonicity the stochas-
tic force f}, acting on mode k, results from the third or-
der term in the potential,

fi=2 V34,4, , (26)

ILm

or, following Eq. (16), the stochastic force squared is pro-
portional to the square of the mean squared displacement
(u?)2 With this relation the phonon damping y(T) can
be written as

(u?)?
-

Using the vibrational mean square displacements ob-
tained from the data evaluation in terms of Eq. (23) we
have calculated the prediction of Eq. (27). The solid line
in Fig. 13 compares the calculation with the experimental
values. A good agreement between the results of the vi-
brational relaxation model and the estimation of phonon
damping due to third order interactions can be obtained.
Figure 14 displays the two parameters determining the
density of states. While w,, the parameter responsible for
the density of states due to the random matrix, is basical-
ly temperature independent, the Debye frequency wj, due
to the sound waves drops by about a factor of 2. Figure
15 presents Brillouin scattering results by Kriiger [42] for
the longitudinal sound velocity v; as a function of tem-
perature. The figure also includes a low temperature re-
sult for the transverse velocity v,. The temperature
dependence is characterized by a weak softening of the
sound velocity below T, and a strong drop above this
temperature. Using an empirical relation between v, and
v; which holds, e.g.,, for polycarbonate of 2,2-bis(4-
hydroxyphenyl)-propane (BPA-PC) [20],

y(T)= (27)

2 .2
Vo — Uy

1
-, (28)
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FIG. 15. Sound velocities in polybutadiene as a function of
temperature (see text [42]).

where v,;, and v, are reference sound velocities at low
temperature, v, was estimated and included in Fig. 15.
With these sound velocities and the temperature depen-
dent density of PB the Debye frequency wp was calculat-
ed according to Eq. (25). The result is shown as a dotted
line in Fig. 14. Apart from an upward shift of about 1
meV the fitted Debye frequencies and the Brillouin data
agree well over the investigated temperature range, show-
ing again the consistency of the approach.

As can be seen from Fig. 14, in the investigated tem-
perature range the Debye frequency due to sound waves
changes by about 50%. Consequently, the sound wave
density of states, which changes with the third power of
the Debye frequency, increases by a factor of 8. In order
to judge the contribution of the sound waves to the total
density of states the low temperature result for g () /w?
displayed in Fig. 12 may serve as a guide. There, the con-
tribution of sound waves to the spectrum can be read off
as the E —0 limit, being a very substantial part of the to-
tal spectrum. On increasing the temperature to 280 K,
this contribution is expected to increase by a factor of
about 8. Thus approximating the temperature depen-
dence of the vibrational contribution to the spectrum by
a temperature extrapolation of the harmonic, low tem-
perature density of states underestimates at least
significantly the changes of the sound wave density of
states. On the other hand, the nearly constant density of
states for the random matrix modes reflects the experi-
mental fact of a seemingly harmonic temperature depen-
dence of the spectra at higher frequencies, which is found
rather generally in glasses.

VI. CONCLUSIONS

The first result of this paper is to corroborate the
finding of two different time regimes in the dynamics of
polymers at the glass transition temperature range and
above. This implies that the behavior previously found in
PVC [10] appears to be a general feature of glass-forming
polymers (and probably of glass-forming systems in gen-
eral) and it is not a consequence of the particular charac-
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ter of PVC.

The crossover time ¢, separating the two dynamical re-
gimes is of the order of 2 ps and seems to depend neither
on temperature nor on Q. This makes it difficult to inter-
pret this process as the 8 process of the mode coupling
theory, as has usually been done in the recent literature
[6-8]. As far as PB is concerned, that difficulty was al-
ready noted in earlier mode coupling fits of the suscepti-
bility behavior obtained from TOF data [28]. These fits
failed to show the expected shift of the susceptibility
minimum with temperature and the scaling behavior.

In this paper we have shown that the fast process could
be satisfactorily described by two different models. In the
first [10], once the harmonic phonons are removed, the
fast process emerges as a Debye regime of the slower re-
laxation process (a relaxation). This fast regime can be
associated with the conformational transitions in the ma-
cromolecular chain free from intermolecular interactions.
In this framework z, means the time at which these in-
teractions start to play a significant role in the dynamics.
In the second model, the fast process has a vibrational
origin and it is ascribed to the softening of the vibrational
boson peak with increasing temperature. In this frame-
work, ¢, means the crossover time between vibrations and
relaxations. Since both models give a good fit to the
available data, neutrons are obviously unable, up to date,
to decide whether one deals with fast relaxations or vi-
brational softening. However, the results have important
implications in either one of the two cases. In the vibra-
tional softening case, the results imply an exceedingly
high mode Griineisen parameter of the modes at the bo-
son peak, considerably higher than that of the Brillouin
sound waves. It is difficult to conceive an explanation for
such a strong anharmonicity. On the other hand, the
Brillouin phonons do indeed show a considerable soften-
ing with increasing temperature. This fact has to be tak-
en into account in future versions of the relaxation model
in order to improve the harmonic approximation used to
remove the phonon component from the scattering spec-
tra.
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APPENDIX: SCATTERING CROSS SECTION
FOR A DAMPED HARMONIC OSCILLATOR

In the following we calculate the incoherent intermedi-
ate dynamic scattering function S (Q,¢) for a damped har-

monic oscillator in the classical approximation. The
Langevin equation for a damped oscillator reads
d? d 2
———dtzx +ygt—x +wox =f(1) , (A1)

where x is a generalized coordinate, w, the eigenfrequen-
cy, ¥ the damping, and f(¢) the random force. For the
random forces we assume white noise, resulting in

(f(t)f(t'))-“—‘TyS(t—t’) . (A2)
Here, m is the oscillating mass and T the temperature.
kp denotes the Boltzmann constant and the angular
brackets indicate a thermal average. Using the oscillator
Green function

G(1)= Bl e~ Viginer

D]

(A3)

where ©(¢) is the step function and &°=wi—y?/4, Eq.

(A1) is solved as

x(O="2 ' A(©e~ P Oin[a(t—£))dE . (Ad)
[n) — 00

In order to calculate the scattering function we need the
correlation function

(x(t)x(O)):_j_zft fo (A(E) A (q))er/—E~m)
@ —oo T —o
Xsin[@(t —£)]

Xsin[a(—n)]ld&dy .
With Eq. (A2) the correlator becomes

(AS)

(x(t)x(0))=

k,T
2 2e_(7’/2" {—E—sin&it +cos&7t] . (A6)
ma)o 25)

In Gaussian approximation, which is exact for harmonic
oscillators, the intermediate scattering function reads

S(Q,t),,=exp [-— 0’ {({[x(0)]*) —{x(£)x(0))} ] .

3
(A7)
With the result of Eq. (A6) we finally get
Q%kyT
S(Q,t)p=€expi— ——
X [1—e 72t | Xogingt + coswr ] .
2&

(A8)

This solution is also valid for imaginary &, transform-
ing the trigonometric to hyperbolic functions. In order
to relate to quantum mechanics we consider the ap-
propriate quantum mechanical expressions for the har-
monic oscillator correlation function:

(x(OPY==—L—(2(a%a)+1)

ZMCL)O
#i 2 kgT
= +1l | =—, A9
2M w, eﬁ“’o/kBT . w3 (49

where @' and @ are the phonon creation and annihilation
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operators. The = sign is valid for high temperatures.
Correspondingly, for the high temperature expression of
the distinct time correlator we have

kgT

(x(t)x(0))= Mok cosw?t .

(A10)

Thus the quantum mechanical high temperature approxi-

mation of S (Q, ) becomes, in analogy to Eq. (A7),

kT
Q—%( 1—coswgt) | .
3MC00

S(Q,t)=expi— (A11)

Equation (A11) corresponds to the undamped classical
scattering function.
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